Oral Presentation ANZBA Annual Scientific Meeting 2025

Developing plasma-activated dressings to stimulate burn healing (22938)

Ruth Simpson 1 , Ainslie Derrick-Roberts 1 , Xanthe Venn 1 , Allison Cowin 1 , Bernard Carney 2
  1. University of South Australia, Adelaide, SOUTH AUSTRALIA, Australia
  2. Women’s and Children’s Hospital, Adelaide, South Australia, Australia

Standard treatments for severe and infected burns commonly rely on silver, but due to silver-based cytotoxicity, patients are at risk of delayed wound healing and increased hypertrophic scarring (Qian et al., 2017, Barrett et al., 2022). Thus, there is a need for innovative burn treatments that manage infection risk and stimulate healing, ultimately minimising the risk of poor outcomes. Cold Atmospheric Plasma (CAP) has been shown to improve burn wound healing in many in vivo studies (Zinovev et al., 2018, Duchesne et al., 2019, Dang et al., 2021, Li et al., 2023, Abbasi et al., 2021), and in vitro stimulates keratinocyte and fibroblast proliferation and migration, improves bacterial killing efficiency of immune cells  and modulates inflammatory signalling (Namini et al., 2019, Souza et al., 2020, Lee et al., 2023, Arndt et al., 2013, Bhartiya et al., 2021, Duchesne et al., 2018, Duchesne et al., 2021, Frescaline et al., 2020). Therefore, as a potential alternative to silver, CAP is of increasing interest.

Much of the present research has focussed on direct plasma treatments, delivering a range of therapeutic reactive oxygen and nitrogen species (RONS). However, direct plasma treatments can be challenging for clinical settings, as dosage from plasma devices can be unreliable, and the plasma delivery using plasma jets does not fit well with existing clinical pathways. To overcome this, a range of plasma-activated hydrogels are being developed to create a dressing with easy-to-deliver, consistent and quick-application doses of therapeutic reactive oxygen and nitrogen species (RONS) to be administered at the clinic. Indeed, our PVA-based plasma-activated hydrogels have reduced inflammatory markers in scald burn mouse models and show modest inhibitory effect against S.aureus in vitro. Optimisation of these dressings is ongoing, aiming to deliver a plasma-activated hydrogel which promotes healing and bacterial killing and integrates well into current clinical practice. 

  1. ABBASI, E., MEHRABADI, J. F., NOURANI, M., NAMINI, Y. N., MOHAMMADI, S., ESMAEILI, D. & ABBASI, A. 2021. Evaluation of cold atmospheric-pressure plasma against burn wound infections and gene silencing. Iranian Journal of Microbiology, 13, 544-552.
  2. ARNDT, S., UNGER, P., WACKER, E., SHIMIZU, T., HEINLIN, J., LI, Y. F., THOMAS, H. M., MORFILL, G. E., ZIMMERMANN, J. L., BOSSERHOFF, A. K. & KARRER, S. 2013. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One, 8, e79325
  3. BARRETT, J. P., RABY, E., WOOD, F., COOREY, R., RAMSAY, J. P., DYKES, G. A. & RAVENSDALE, J. T. 2022. An in vitro study into the antimicrobial and cytotoxic effect of Acticoat™ dressings supplemented with chlorhexidine. Burns, 48, 941-951.
  4. BHARTIYA, P., MASUR, K., SHOME, D., KAUSHIK, N., NGUYEN, L. N., KAUSHIK, N. K. & CHOI, E. H. 2021. Influence of Redox Stress on Crosstalk between Fibroblasts and Keratinocytes. Biology, 10, 1338.
  5. DANG, C. P., WEAWSEETONG, S., CHAROENSAPPAKIT, A., SAE-KHOW, K., THONG-ARAM, D. & LEELAHAVANICHKUL, A. 2021. Non-Thermal Atmospheric Pressure Argon-Sourced Plasma Flux Promotes Wound Healing of Burn Wounds and Burn Wounds with Infection in Mice through the Anti-Inflammatory Macrophages. Applied Sciences-Basel, 11.
  6. DUCHESNE, C., BANZET, S., LATAILLADE, J. J., ROUSSEAU, A. & FRESCALINE, N. 2019. Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. Journal of Pathology, 249, 368-380.
  7. DUCHESNE, C., FRESCALINE, N., BLAISE, O., LATAILLADE, J.-J., BANZET, S., DUSSURGET, O. & ROUSSEAU, A. 2021. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere, 6, 10.1128/msphere.00217-21.
  8. DUCHESNE, C., FRESCALINE, N., LATAILLADE, J.-J. & ROUSSEAU, A. 2018. Comparative study between direct and indirect treatment with cold atmospheric plasma on in vitro and in vivo models of wound healing. Plasma Medicine, 8.
  9. FRESCALINE, N., DUCHESNE, C., FAVIER, M., ONIFARASOANIAINA, R., GUILBERT, T., UZAN, G., BANZET, S., ROUSSEAU, A. & LATAILLADE, J.-J. 2020. Physical plasma therapy accelerates wound re-epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts. The Journal of Pathology, 252, 451-464.
  10. LEE, Y., RICKY, S., LIM, T. H., KIM, H., LEE, E. J., SONG, Y., LEE, S. & JANG, Y. 2023. An Atmospheric Plasma Jet Induces Expression of Wound Healing Genes in Progressive Burn Wounds in a Comb Burn Rat Model: A Pilot Study. Journal of Burn Care and Research, 44, 685-692.
  11. LI, M., GAO, J., WANG, L., LIU, J., FU, C., YANG, X., ZHANG, S., LI, X., LUO, S. & YANG, C. 2023. Basic research and clinical exploration of cold atmospheric plasma for skin wounds. Bioengineering and Translational Medicine.
  12. NAMINI, Y. N., HEIDARZADEH, S., KHALEDI, A., ABBASI, E., ABBASI, A. & ESMAEILI, D. 2019. Study on the killing effect of cold atmospheric pressure plasma on MRSA Staphylococcus aureus in vitro and in vivo infection model. Malaysian Journal of Microbiology, 15, 394-399.
  13. QIAN, L.-W., FOURCAUDOT, A. B. & LEUNG, K. P. 2017. Silver Sulfadiazine Retards Wound Healing and Increases Hypertrophic Scarring in a Rabbit Ear Excisional Wound Model. Journal of Burn Care & Research, 38, e418-e422.
  14. SOUZA, L. B. D., SILVA, J. I. D. S., BAGNE, L., PEREIRA, A. T., OLIVEIRA, M. A. D., LOPES, B. B., AMARAL, M. E. C. D., DE ARO, A. A., ESQUISATTO, M. A. M., SANTOS, G. M. T. D. & ANDRADE, T. A. M. D. 2020. Argon Atmospheric Plasma Treatment Promotes Burn Healing by Stimulating Inflammation and Controlling the Redox State. Inflammation, 43, 2357-2371.
  15. ZINOVEV, E., TSYGAN, V., ASADULAEV, M., BORISOV, O., LOPATIN, I., LUKIANOV, S., ARTSIMOVICH, I., PANEIAKH, M., KOSTIAKOV, D., KRAVTSOV, S. & OSMANOV, K. 2018. Possibilities of application of low-temperature air pressure in the treatment of burn wounds. Plasma Medicine, 8(3), 217-224.